Задача 1 (5 баллов)

Подобрать длины звеньев (в см) шарнирного четырехзвенника так, чтобы в некоторый момент движения угловые скорости его звеньев были бы равны заданным. Положение опорных шарниров четырехзвенника известно. Расстояния даны в см, угловые скорости - в рад/с.
Вариант 1
$K \mathbf{1 8 .}$
$\omega_{O A}=2, \omega_{A B}=-0.6, \omega_{B C}=0.3$,
$A B \perp O C, A B=61$.

Задача 2 (15 баллов)

Плоский механизм с одной степенью свободы состоит из шарнирно соединенных стержней и муфты, скользящей по направляющему стержню и шарнирно закрепленной на другом стержне или вращающейся на неподвижном шарнире. Кривошип $O A$ вращается против часовой стрелки с постоянной угловой скоростью $\omega_{O A}$. Горизонтальные и вертикальные размеры на рисунках даны для неподвижных шарниров и для линий движения ползунов (в см). Найти скорость муфты D относительно направляющего стержня $B D$ (в см/с).

Задача 3 (5 баллов)

Однородная прямоугольная горизонтальная плита весом G опирается на шесть невесомых шарнирно закрепленных по концам стержней. Вдоль ребра плиты действует сила F. Определить усилия в стержнях (в кН).
Вариант 1
C13.

$a=2 \mathrm{~m}, b=3 \mathrm{~m}, c=4 \mathrm{~m}$,
$F=1$ кН, $G=2$ кН.

Задача 4 (10 баллов)

Механическая система с идеальными стационарными связями имеет две степени свободы и движется под действием сил тяжести. Три элемента механизма наделены массами, кратными некоторой массе m. Трением пренебречь. Подвижные и неподвижные блоки считать однородными цилиндрами. Найти ускорение груза A.

Вариант 1
Д14.

$m_{A}=3 m, m_{B}=5 m, m_{C}=4 m$,

